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SUMMARY

A new efficient numerical method for three-dimensional hydrodynamic computations is presented and
discussed in this paper. The method is based on the operator splitting method and combined with
Eulerian–Lagrangian method, finite element method and finite difference method. To increase the
efficiency and stability of the numerical solutions, the operator splitting method is employed to partition
the momentum equations into three parts, according to physical phenomena. A time step is divided into
three time substeps. In the first substep, advection and Coriolis force are solved using the explicit
Eulerian–Lagrangian method. In the second substep, horizontal diffusion is approximated by implicit
FEM in each horizontal layer. In the last substep, the continuity equation is solved by implicit FEM, and
vertical diffusion and pressure gradient are discretized by implicit FDM in each nodal column. The
stability analysis shows that this method is unconditionally stable. A number of numerical experiments
have been performed. The results simulated by the present scheme agree well with analytical solutions
and the other documented model results. The method is efficient for 3D shallow water flow computations
and fully fits complicated configurations. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: three-dimensional numerical method; hybrid method; splitting method; Eulerian–Lagrangian method;
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1. INTRODUCTION

Only a few numerical methods for time-dependent, three-dimensional (3D), shallow water flow
computations are known in current literature. These methods are commonly developed on the
basis of finite difference method (FDM), finite element method (FEM), or the combination of
both. The time schemes range from fully explicit to fully implicit. In general, FDM is more effi-
cient and stable than FEM, but cannot fit complicated geometry. This may induce large errors
in the simulations of hydraulic engineering problems with complex boundary configurations.
Although FEM is suitable for arbitrary boundaries, its huge computer storage and computa-
tional time requirement, as well as poor stability, hinder its applications in 3D hydrodynamic
modeling. A fully explicit scheme is highly efficient in computations, but imposes a severe
limitation on time steps owing to the propagation of surface gravity waves. In contrast, a fully
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implicit time scheme has good stability to allow a larger time step but the computations
increase drastically because of its requirement of matrix inversion. For these reasons, the
advancement of numerical methods in hydrodynamic computations has been turning to the
direction of semi-implicit time schemes, combined with FEM and FDM.

In recent years, a few semi-implicit schemes and fully-implicit schemes with FDM or FEM
have been developed for shallow water flows. Signorimi [1] employed an FEM in the
horizontal planes coupling with FDM in the water column. Kawahara et al. [2] presented a
multilayer finite element model with a lumped mass technique. Based on the multilayer system,
a semi-implicit FEM with high-order shape functions was developed by Li and Zhan [3]. These
FEMs transfer the 3D system into multiple two-dimensional (2D) horizontal systems which
simplify the numerical formulations.

Benque et al. [4] developed a semi-implicit operator splitting method with an FDM for the
simulations of 2D tidal flows. The governing equations were decomposed by the splitting
method according to physical phenomena, then an FDM and a characteristic method were
used for spatial discretization. Nicholson and O’Connor [5] developed a similar splitting
method for 3D tidal flow and sediment transport computations. A fully implicit splitting
method was developed by Wilders et al. [6] and extended to three dimensions by De Goede [7].
The methods described above were based on the ADI method [8] and improved ADI
inaccuracies [4,9] in large time step. Other semi-implicit FDMs were presented by Casulli [10]
and Casulli and Cheng [11]. In their schemes, the explicit Eulerian–Lagrangian method was
used for the approximation of advection to linearize the momentum equations and simplify the
solving system. Stability conditions of these schemes are free of the surface gravity wave
propagation.

The study period of hydrodynamic investigations frequently stretches from days to seasons.
It is essential for a surface water flow model to be equipped with an efficient, stable and
accurate numerical algorithm for intensive and lengthy computations. An operator splitting
formulation coupled with FEM and FDM is presented here for efficient computations of 3D
shallow water currents. In the formulation, the governing equations are transformed into the
sigma (s) co-ordinate system. The computed domain is divided into multiple layers and each
layer is meshed by finite elements. The splitting method is employed to partition the
momentum equations into three parts according to the different physical significance, such as
advection, horizontal diffusion and vertical diffusion. The advection is explicitly discretized by
the Eulerian–Lagrangian method. The horizontal diffusion is discretized by the standard
implicit Galerkin FEM, and the vertical diffusion is approximated by an implicit FDM for effi
cient computations. This combination of numerical methods is not only efficient but also
stable. The special grid arrangement is fitted to complex geometry and is also benefi cial to
parallel computations. A number of numerical experiments are performed using this method.
The computational efficiency, stability and accuracy of this method are illustrated in the
numerical experiments.

2. THE GOVERNING EQUATIONS

The Navier–Stokes equations for shallow waters with the hydrostatic pressure assumption are
transformed from Cartesian co-ordinates (x, y, z) to s-co-ordinates (x1, x2, x3) using the
following expression
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x3=
z+h

H
, (1)

where h is the water depth relative to the mean sea level; H=z+h is the total water depth
from the free surface to bottom; z is the water level (see Figure 1); and x3 is the transformed
vertical co-ordinate with the values of 0 at the bottom and 1 at the free surface. Using the
chain rule and neglecting the higher-order hybrid derivatives, the governing equations in the
s-co-ordinate system can be derived as follows
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u, 6 and w are components of velocity in the x-, y- and z-directions, respectively; ox, oy and oz

are eddy diffusion coefficients of water in the x-, y- and z-directions, respectively (see Figure
1); t is time; f is the Coriolis parameter ( f=2v sin u); v is the angular frequency of the earth
rotation; u is the latitude of the computed region. In Equations (2) and (3), the vertical
co-ordinate is linearly transformed into uniform co-ordinate, which simplifies the numerical
formulations.

3. OPERATOR SPLITTING

The shallow water momentum equations account for the fluid advection, horizontal and
vertical diffusions, Coriolis force and pressure variation. The characteristic temporal and
spatial scales associated with these hydraulic phenomena span several orders of magnitude.
Thus, each mathematical term in the momentum equations carries a certain amount of
physical and numerical significance in a hydrodynamic model. For instance, the pressure

Figure 1. Definition of variables and s-transformation in the 3D model.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 771–789 (1998)



QIMIAO LU AND ONYX W.H. WAI774

gradient terms are principally responsible for the general movement of water. The vertical
diffusion terms are key elements in a 3D model. The non-linearity of the advection terms easily
causes numerical instability. Contrarily, the horizontal diffusion terms take a smoothing effect
that creates a more stable numerical environment. It is more correct to treat these terms with
suitable numerical methods according to their particular physical and numerical natures.

In this model, the time integration of the momentum equations in a time step is partitioned
into three sequential substeps. So a simpler system conforming to a particular physical
characteristic, decomposed from the complicated momentum equations, is involved in a
substep. The continuity equation, however, is integrated in a time step for the purpose of mass
conservation.

In the first substep, the system constituting the advection and Coriolis force terms is solved
for the velocity. In general, numerical instability in hydrodynamic computations is mainly
caused by the incorrect approximation of the advection terms. To improve the numerical
stability, the advection terms in this system are discretized at an integer time step (e.g. nDt,
where Dt is the time step). The equation in this substep is given as
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In the second substep, only the horizontal diffusion terms are considered, as follows:
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Shallow water flows with free surfaces are principally driven by pressure gradients and/or
surface shear stresses such as wind, but obstructed by bottom friction. The surface shear
stresses and the bottom friction are essentially associated with the vertical diffusion in a 3D
model. Therefore, the pressure gradient and vertical diffusion terms are grouped together to
determine the velocity in the last substep, as shown below.
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To ensure mass equilibrium in an element, the continuity equation is integrated in a time
step to solve the surface elevation. By integrating Equation (2) from the bottom to surface with
the following boundary conditions
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i.e. u3=0 at the water surface (x3=1) as well as at the bottom (x3=0), the continuity
equation becomes
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=0, (8)

where Qj =	1
0 uj dx 3, j=1, 2 is the vertical averaged velocity in the xj-direction.

The differential equation for solving the vertical velocity is given in Equation (9), which is
also obtained from the continuity equation.
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where qj=	x3
0 u j dx3, j=1, 2.
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Figure 2. Grid arrangement in s-co-ordinate system.

4. SPATIAL DISCRETIZATION

The spatial discretization and the nodal arrangement for the above mentioned differential
equations are described in this section. Because of the s-co-ordinate transformation, the
computing domain is transformed into a uniform depth domain in which the governing
equations are discretized and solved. Thus, the nodes can be uniformly arranged in the
vertical direction, i.e. the transformed domain is divided into a number of horizontal layers
with equal thickness. In each horizontal layer, the finite elements are used to fit complex
geometry (see Figure 2).

For accurate computations, the nine-node isoparameteric quadrilateral finite elements are
employed. According to Thomasset [12], the spatial gradient of the velocity is one order
higher than that of the surface elevation. Therefore, the basic shape function selected for
velocities is a two-order polynomial function while a one-order polynomial function is used
for the surface elevation and water depth in a finite element [13], i.e.!u=ui, jfj

z=z j8j, h=hj8j

, j=1,…,9, (10)

where the subscript j denotes the jth node, and f and 8 are the two- and one-order
polynomial functions, respectively.

4.1. Approximation of ad6ection with Eulerian–Lagrangian method

In the first substep, Equation (4) is solved for the velocity ui
n+1/3. The advection non-lin-

earity in Equation (4) causes the difficulty of numerical discretization and instability. Eule-
rian–Lagrangian methods are able to linearize the non-linear advection terms along the
streamline with the acceptable stability. Casulli’s investigations [10,11] have shown that the
Eulerian–Lagrangian approximation was relatively accurate and unconditionally stable for
the advection terms. The Eulerian–Lagrangian methods, similar to the upwind method and
characteristic methods, are more physically sound than other methods in the aspect of the
advective physical behavior. For this reason, an explicit Eulerian–Lagrangian scheme is
employed for the advection terms in this model. The Coriolis force terms are implicitly
approximated for the purpose of stability [14]. Therefore, Equation (4) can be rewritten as
follows:
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To obtain the Eulerian–Lagrangian approximation, a streamline which is the displacement of
a particle passing from the point xi over time is defined as follows:
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Along the streamline, the co-ordinate of point p, which is being convected to the point xi in
a lapsed time Dt (see Figure 3), can be derived from Equation (12).
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n is the velocity of the point p at time nDt in the xi -direction. The following

approximate expression is obtained using the Taylor expansion.
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Thus, the solution of Equation (11) at the grid point xi can be obtained directly from the
following equation:
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In fact, the streamline described in Equation (12) is not a straight line over time Dt because
the velocity ui is not constant along the streamline. For large time steps, using direct
integration of Equation (12) to calculate the co-ordinates of p may cause a large computation
error, or result in the streamline passing through the solid boundary. For this reason, the time
step Dt is divided into K equal time pieces of length dt=Dt/K. By integrating Equation (12),
the streamline is traced backwards from the point xi over time Dt with the following iteration:

Figure 3. Definition of a streamline passing through point xi.
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where xi,k is the co-ordinate of the point pk obtained after the kth iteration (see Figure 3), ui,k

is the velocity at pk. In practice, the point pk may not be located at a grid point and/or a layer.
So the vertical bilinear interpolation should be used to calculate ui,k as follows:
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Here, ui,k
(l) is the velocity at the projecting point of pk on the lth layer, calculated by Equation

(10); x3
(l)\x3,k\x3
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(l−1), is the thickness of a layer.

4.2. Approximation of horizontal diffusion with implicit FEM

In the second substep, Equation (5) is approximated by the implicit FEM in each layer as
follows:
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where ui= [ui,1, ui,2 , . . . , ui,N]T, and N is the number of nodes in a layer,
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G is the boundary around the interested domain V and (/(n is the derivative normal to the
boundary. For fixed grids and constant horizontal eddy coefficients, the matrix D becomes a
constant coefficient matrix in all layers over the entire computation period. The inverse of matrix
D can be calculated in advance, thus, it will greatly save the computational time. And also, this
scheme is beneficial for parallel computations because of the convenient vectorization.

4.3. Approximation of continuity equation with implicit FEM, pressure gradient and 6ertical
diffusion with implicit FDM

In the last substep, the continuity equation (8), and the vertical diffusion and pressure gradient
terms in the momentum equation (6) are used to solve for the surface elevation and velocities.
To ensure mass conservation in an element and obtain stable and efficient computations, the
continuity equation is discretized by the fully implicit FEM, while the momentum equation is
approximated by the fully implicit FDM. However, the computation efficiency is reduced if the
two equations are solved simultaneously. For this reason, in the continuity equation, Qi

n+1 should
be eliminated by Equation (6). By integrating Equation (6) from the bottom to surface with the
following boundary conditions,
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the continuity equation becomes the following form:
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Here, i =1, 2, and t i
w, t i

b are the components of the surface and bottom shear stresses in the
xi-direction, respectively. Thus, the above differential equation can be independently solved in
the horizontal plane (the x1–x2 plane). Applying the standard Galerkin method gives
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Qn is the vertical averaged velocity normal to the boundary. Because Equation (17) is a set of
non-linear algebraic equations, an iteration method must be used to obtain the solutions.

Now an implicit FDM is used to discretize Equation (6) in each vertical grid column. With
the central difference scheme and insertion of the boundary conditions at the bottom and
surface, the finite difference approximation of Equation (6) is found to be

Bui
n+1=Vi, (18)

where u= [ui,1, ui,2, …, ui,L ]T , ui,1 is the velocity at the lth layer, L is the number of vertical
layers, B is a triangular coefficient matrix and Vi is a known vector defined as
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The surface elevation derivative can be easily calculated using Equation (10) as shown below.�(zn+1
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where 8 (e) denotes the shape function in the eth element, mj is the number of elements around
the jth node. Evidently, the algebraic Equation (18) can be solved efficiently by the double
sweep method and easily transformed to parallel computation algorithms.
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The vertical velocity can be directly solved from Equation (9) as follows:
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Equation (19) is efficiently solved without any matrix inversion involved and easily applied to
parallel computations.

5. STABILITY AND EFFICIENCY

The stability of the proposed scheme is analyzed by the von Neumann method. For simplicity,
the stability of the scheme is respectively studied in the three substeps. At first, a harmonic
decomposition error at the time nDt is introduced as shown below.

En=jne igj xj, j=1, 2, 3, (20)

where j is an error amplification factor, gi is a frequency of the error in the xi-direction, i is
the complex number 
−1. By replacing ui in Equation (13) with Equation (20), the error
amplification factor in the first substep is obtained as follows:)jn+1/3
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Here, Dxj,p=xj−xj,p. It can be seen that the approximation of Equation (13) is uncondition-
ally stable.

By introducing an error in the finite element approximation of Equation (15), the error
amplification factor in the second substep is derived as)jn+2/3
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)
= �D−1M�= �M�
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Both the mass matrix M and the stiffness matrix F are positive-definite, therefore, there exists
an invertible matrix P such that PTMP=I, in which I is the identity matrix and the superscript
T denotes the transpose of the matrix. The congruent matrix F1=PTFP is also positive-defi
nite and symmetric. Therefore, an orthogonal matrix L can be found to diagonalize F1 , i.e.

LTF1L=LTPTFPL=diag (x1, x2,…, xN),

where, x1, x2, . . . , xN are the eigenvalues of F1 and xi\0, i=1, 2, . . . , N. Using the
characteristic of the orthogonal matrix LTL=I, the following determinant is obtained
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From the above inequality, the amplification factor in the second substep is always 51, such
that the finite element approximation, Equation (15), is unconditionally stable.
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Similarly, the error amplification of the finite difference approximation, Equation (18), in
the last substep can be derived as) jn+1
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Undoubtedly, the approximation of Equation (18) is also unconditionally stable. Thus, the
error amplification factor over a time step is given as
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Hence, the present scheme for the momentum equations is proven to be unconditionally stable.
In the stability analysis of Equation (17), the velocity Qi

n+2/3 and the water depth Hn+1 are
assumed to be constants, due to the difficulty of stability analysis for non-linear algebraic
equations. For simplicity, the following one-dimensional form of Equation (16) is used to
analyze the stability because the numerical behaviors of Equation (16) are consistent in the x1-
and x2-directions.

zn+1−zn

Dt
+Q

(z

(x
−DtgH

(2z

(x2=0. (26)

Thus, for the typical node i, the assembled implicit finite element equations can be obtained as
follows [15].
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By introducing the error of Eq. (20) , the amplification factor of the above algebraic equation
is obtained.
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Obviously, the fully implicit finite element scheme of Equation (26) is unconditionally stable.
Extending it to two dimensions, it can be proven that the fully implicit finite element scheme
for a two-dimensional advection-diffusion equation such as Equation (16) is still uncondition-
ally stable. Therefore, the present implicit finite element scheme of Equation (17) is uncondi-
tionally stable.

To verify the stability of the present scheme in actual simulations, a test case is set up to
simulate a steady flow in a rectangular channel. The flow is induced by the water level
difference of 2 mm between the inflow and outflow. The channel dimension is 1000 m wide,
2000 m long and 10 m deep. The water body is divided into 11 vertical layers and 50 square
finite elements of 231 nodes with grid size 100 m in each horizontal layer. The simulations are
performed with time steps varied from 600 to 9000 s, corresponding to the Courant numbers
of 9–135. The surface velocities at the channel center simulated with these time steps are
shown in Figure 4. It can be seen that the simulations are completely stable, despite the slight
numerical oscillations at the beginning of the flow development in the large time step
simulations. In fact, these numerical oscillations are induced by the first-order time accuracy,
o(Dt), rather than by the scheme stability.
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Figure 4. Stability test of a channel flow.

The computation efficiency is investigated in the test case. The computation is performed
using PC Pentium-120 Mhz. The total memory required for the computation is :2.0 Mbytes.
The computational time at each time step is listed in Table 1. It can be seen that the present
combined scheme is very efficient for the diffusion computations in the last two steps. The
computation in the first substep, which depends on the iterative number K (see Section 4.1,
K=10 in the test case), takes slightly longer than in the other substeps. To illustrate the
present scheme efficiency, it is necessary to compare the method with the other 3D method.
For the case of the 3D semi-implicit multilayer model, the computational amount for the
momentum equations at each time step is as much as 2L times for an advective-diffusion
equation. The running time for this test case with the above multilayer method is estimated to
be 4235 (s/100). This figure shows that the present scheme is :20 times faster than the
multilayer model in the momentum computations. Furthermore, the computation efficiency
will increase much more if this scheme is applied to mass transport models such as the
sediment transport model and water quality model.

The computational time for the continuity equation depends on the iterative convergence of
Equation (17). In general, the iterative convergence is fast in shallow water flow simulations
because the variation of surface elevation is much less than the water depth. For example, the

Table 1. The computational time at each time step

Computational time (s/100)Substep

In 1st substep In 2nd substepEquations In 3rd substep Total

249153 204Momentum equations
– –Continuity equation 385 335

5050–Vertical velocity –
63943749153Total
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iterative number in the test case is less than three under the given precision, 10−6. The results
show that the present scheme is highly efficient for the shallow water flow computations.

6. MODEL VERIFICATION

To verify the applicability of the present numerical scheme, four numerical experiments are
performed. These numerical experiments are also used to present the physical behaviors of the
different terms such as advection, Coriolis force, horizontal diffusion, etc. in the general flow
patterns. The simulated results will be compared with both the analytic solutions and the
numerical results computed by other documented models in this section.

6.1. Wind-dri6en flow in a rectangular channel

This numerical experiment is designed to verify velocity profiles in the 3D flow field by
simulating a wind-driven flow in a rectangular channel. The dimension of the channel is 2000
m in length, 1000 m wide and 10 m deep. The water body is divided into 11 layers, and each
layer is decomposed by 50 finite elements with grid size 100×100 m and 231 nodes. The free
surface is subject to a constant longitudinal wind induced stress of t1

w=1.5 Nm−2 and t2
w=0

Nm−2. The no-slip condition is imposed on the bottom and the horizontal diffusion and
Coriolis forces are neglected in the experiment. The flow parameters of

oz=0.010 m2 s−1, r=1025 kg m−3,

and the large time step of 600 s are employed in the simulation.
The computed steady velocity profile at the center of the channel is compared with the

corresponding analytical solution [16] (see Figure 5). It can be seen that the numerical
simulated result agrees quite well with the analytical solution.

6.2. Wind-dri6en flow with Coriolis force in a deep basin

This numerical experiment is to simulate the flow driven by wind and affected by Coriolis
force in a deep rectangular basin. The basin represents the North Sea with dimensions of
north–south length of 800 km, west–east length of 400 km and uniform depth of 65 m as
considered by Davies [14] and Li [3]. The water body is divided into 11 layers, in which 32
finite elements with grid size 50×50 km and 153 nodes are arranged. The water, initially at
rest, is subject to a uniform northerly wind stress of t1

w=0 Nm−2 and t 2
w= −1.5 Nm−2.

Referring to the other documented models, the flow parameters are set as

ox=oy=0 m2 s−1, oz=0.065 m2 s−1, f=0.44 hr−1, r=1025 kg m−3,

C=13 m0.5 s−1.

A time step of 1800 s is used in the 5 day continuous simulation.
The computed steady state velocity profiles at the basin center are compared with Davis’ and

Li’s results (see Figure 6). It can be seen that the present solutions agree well with the other
two sets of numerical results. The time series of the surface velocity at the basin center is
shown in Figure 7. The flow oscillations simulated by the present model are revealed in
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Figure 5. Comparison of the computed and analytic velocity profiles in a wind-driven flow.

Figure 8. From these figures, the flow oscillation development can be described as two stages.
In the first stage, the slope of water level in the north–south direction increases with the
development of the surface flow, subject to the wind stress. When the force induced by the
adverse pressure gradient is equal to the wind induced force, the flow turns to the second stage.
In this stage, the opposite flow near the bottom develops with increasing magnitude, while the
surface flow reduces its intensity due to the energy transfer, exchange and dissipation through
vertical diffusion between the surface and bottom boundary layers. Both of these stages
alternate several times until the steady flow is reached.

6.3. Vertical recirculating flow in a dredged channel

Vertical flow recirculation often takes place in sharp topographic areas such as dredged
ditches. This numerical experiment is to simulate vertical recirculating flows in a dredged ditch
perpendicular to the flow direction. The simulating domain is an open rectangular channel
with dimensions of length 800 m, width 400 m and depth 10 m. In the channel, an artificial
ditch is dredged with depth 16.5 m and width 200 m (see Figure 9). A constant flow is
produced by setting the two end boundaries with water levels of 92 mm. The water body is
divided into 80 finite elements and 369 nodes in each of the 21 layers. The grids are refined in
the dredged ditch area for an accurate simulation of vertical recirculation. In the simulation,
a parabolic-constant distribution of the vertical diffusive coefficient is employed as shown
below.

oz=
!ku�Hx3(1−x3)

0.25ku�H
for x3B0.5
for x3]0.5

,
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Figure 6. Comparison of the computed velocity profiles at the basin center with other documented models.

where k is the von Karman constant equal to 0.4, u� is a current-related bed shear velocity.
The other flow parameters are set as

ox=oy=1.0 m2 s−1, f=0 hr−1, r=1025 kg m−3, C=60 m0.5 s−1.

The time step of 120 s is used in the simulation.
The initial vertical recirculation development in the dredged ditch on the x–z plane is shown

in Figure 10 (u–w vector plot). It can be seen that a small recirculation appears, firstly at the
lower upstream corner of the ditch. Then, the recirculation expands and moves downstream
with time. When the first recirculation reaches the downstream corner of the ditch, another,
more profound, second recirculation develops at the upstream corner. The first recirculation is
replaced by the second fully developed downstream-moving recirculation. This alternate
recirculating pattern repeats once every 30 min (see Figure 11). The numerical results reveal

Figure 7. Time series of surface velocity at the basin center.
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Figure 8. Time series of the velocity vectors at the basin center in the water column.

a reasonable physical recirculation pattern. The appearance of the two alternate recircula-
tion modes depends on the inflow velocity and the geometry of the dredged channel.

6.4. De6elopment of eddy behind a breakwater

This experiment is to simulate a horizontal eddy behind a breakwater. The open
channel configuration used in this experiment is 1500 m long, 300 m wide and 5 m
deep. A breakwater is situated at x=300 m with length of 150 m (see Figure 12). The
water body is divided into 90 elements and 409 nodes in each of 11 layers. The open
boundary conditions are set as the water levels of 95 mm at the inflow and −5 mm

Figure 9. Geometry of the vertical recirculation experiment in a dredged channel on x1–x3 plane.
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Figure 10. Initial development of vertical recirculations in a dredged channel.

at the outflow. The flow parameters employed here are the same as the previous numerical
experiment in Section 6.3.

The development of an eddy behind the breakwater is clearly revealed in Figure 13. The
eddy initially appears behind the breakwater and then expands and moves downstream. The
numerical results reveal the true physical process of this type of flow.

7. CONCLUSIONS

The efficient and unconditional stable operator splitting method making use of the combined
FEM and FDM has been established. Preinversing the coefficient matrix for the horizontal
diffusion computations and employing FDM for vertical diffusion terms makes the present
scheme highly efficient. The scheme is unconditionally stable because the implicit Eulerian–La-
grangian method for advection and implicit schemes for other terms are used. The nine
isoparameteric shape function is employed for velocity, therefore, the scheme is of second-or-
der-accurate in space. Furthermore, the algorithms are easily transformed to parallel computa-
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Figure 11. Alternate development of two vertical recirculations in a dredged channel.

tions. To investigate the applicability of the present method, a number of various numer-
ical experiments have been performed. The computed results agree well with the analyti-
cal solutions and the other documented numerical solutions. The development of
recirculations in a dredged ditch and behind a breakwater are consistent with real physi-
cal phenomena. This method is efficient and is tailored for complicated shallow water
flow simulations.

Figure 12. Geometry of a flow experiment past a breakwater in x1–x2 plane.
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Figure 13. Development of an eddy behind a breakwater in the surface layer.
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